ASSESSMENT OF NATURAL ATTENUATION OF HALOGENATED SOLVENTS USING STABLE ISOTOPE TECHNIQUES

Ivonne Nijenhuis & Hans-Hermann Richnow

Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany

Summer School on Contaminated Soils: from characterization to remediation Universite PARIS EST, 25-06-2012

Application of Stable Isotopes for the Assessment of Natural Attenuation (NA)

NA (= physical, chemical and biological processes)

- alternative, cost-efficient in situ remediation approach
- taking advantage of the ability of microorganisms to degrade pollutants
- abiotic processes only lead to a decrease in contaminant concentration
- only in situ biodegradation results in sustainable removal of contaminants
- \rightarrow Proof of in situ biodegradation required!!!

Isotope fractionation process

• degradation of contaminants

Kinetic Isotope Effect

Difference of reaction rates (activation energy) between light and heavy isotopes leads to fractionation

Kinetic Isotope Fractionation in a in a Closed System: Generic Example

Process identification and quantification based on isotope signatures

Haderlein 2006

Quantification of microbial in situ degradation

in reference experiments

Carbon isotope fractionation of (PCE)

Dehalorespiration

(PCE-> TCE->DCE)

Nijenhuis et al. 2005

Quantification of stable isotope fractionation

Rayleigh Equation:

- C_0 = initial concentration C_t = concentration at time t R_0 = initial isotope ratio
- $R_t = isotope ratio at time t$
- α = isotope fractionation factor

ε [‰] = slope*1000

Enrichment factors (α) with reference strains

	PCE	TCE	
	ε (‰)	ε (‰)	
S. multivorans	-0.4 ± 0.2	-18.7 ± 4.2	- ε-proteobacteria
S. halorespirans	-0.5 ± 0.2	-18.9 ± 1.0	
D. michiganensis	not sign.	-3.5 ± 0.2	δ-proteobacteria
G. lovleyi	not sign.	-8.5 ± 0.6	
Desulfit. strain PCE-S	-5.2 ± 1.5	-12.2 ± 2.3	
Desulfit. strain Viet1	-16.7 ± 4.5	does not dechl. T	CE Firmicutes
Dehalobacter restrictus*	not analysed	-3.3 ± 0.3	
D. ethenogenes strain 195	-6.0 ± 0.7	-13.7 ± 1.8	Chloroflexi
" by Lee et al		-9.6 ±0.4	
Dehalococcoides strain FL2		-8.0 ±0.4#	J

Nijenhuis et al 2005 AEM; Cichocka et al., 2007 FEMS Microbiol Ecol; Cichocka et al., 2008 Chemosphere; *Lee et al., 2007; #unpublised Fletcher et al.

Page 11

Case study: Bitterfeld

Molecular investigations

Detection of microorganisms using taxon specific PCR

Quantification of contaminant biodegradation

Influence of abiotic processes on pollutant concentration

Rayleigh-Equation approach:

Estimation of *in situ* biodegradation

 $\epsilon = > -0.5$ Sulfurospirillum spp.

ε = < - 5.2
Dehalococcoides
Dehalobacter
Desulfitobacterium
Desulfuromonas

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH – UFZ

Case study Bitterfeld (TCE degradation)

ε **= -3.5**

The field site contaminated with chlorobenzenes (CB)

- former chemical production site in Germany
- main products: pesticides, insecticides
- release of contaminants to the subsurface (chlorinated benzenes, lindane)
- construction of a containment in the source zone to avoid further distribution of pollutants
- anoxic aquifer; potential electron acceptors: Fe(III) and SO₄²⁻
- MCB plume of about 1 km length down-gradient
- max. MCB concentration of > 1000 µg L⁻¹

Investigation of anaerobic MCB degradation

in situ

and ex situ

1. Stable Isotope Fractionation (\delta^{13}C_{MCB} [%)

Isotope ratios reported in Delta (δ)-notation [‰] relative to an international standard:

$$\delta^{13}C \ [\%] = \left(\frac{({}^{13}C/{}^{12}C)_{\text{Sample}}}{({}^{13}C/{}^{12}C)_{\text{Standard}}} + 1\right) \times 1000$$

Carbon: in [‰] PDB Belemnite, Cretaceous Peedee Formation, South Carolina

2. In situ microcosm analysis (BACTRAP)

¹³C substrate is converted into ¹³C biomass which can be analysed.

Activity for anaerobic MCB degradation in all wells!

3. Ex situ (laboratory) microcosms

anaerobic headspace (N_2 or N_2/CO_2)

(composite) groundwater sample + resazurin

anoxic preparation (glovebox)

•regular analysis of carbon isotope signature of $\rm CO_2$ and $\rm CH_4$

•incubation at 20°C since 05/2005

Experimental setup:

natural abundance + 1 µl ¹²C-MCB

enriched + 1 µl ¹³C-MCB

sterile controls + 1 µl ¹²C-MCB

negative live control no addition

3. Ex situ microcosms results

Summary

- Application of stable isotopes for **assessment of Natural Attenuation**
- Monitoring of in situ biodegradation at contaminated field sites
- **Proof of anaerobic MCB degradation** by multiple lines of evidence:
 - 1. Stable Isotope Fractionation Analysis
 - 2. In situ Microcosm System (BACTRAP)
 - 3. Ex situ (laboratory) Microcosm Studies

NA concepts are under discussion

Stable isotope tools can be applied for various contaminants

Out line

Pollutants group BTEX, PAH, CKW, fuel additives

Compound benzene, toluene, ethylbenzene, xylenes, cresol naphthalene, 2-methylnaphtalene, *n*-alkanes, PCE, TCE, DCE, VC, di-chloromethane, di/trichloroethane, trichlorobenzene, Lindane (HCHs) MTBE, ETBE, TBA

Enrichment factors ¹³C/¹²C (78), D/H (13), ³⁷Cl/³⁵Cl

- **Redox conditions** oxic/anoxic; nitrate/sulfate/iron(III)-reducing; methanogenic; dehalogenating
- **Reference** more than 30 references (PDF-files available)
- **Field Studies** more than 15 references (PDF-files available)

Data base of fractionation factors: www.isodetect.de

US - EPA Guidelines for the application of CSIA in remediation studies (Office of Research & Development)

Monitored Natural Attenuation of MTBE as a Risk Management Option at Leaking Underground Storage Tank Sites

Thank you for your attention!

