

Bioaugmentation for Site Remediation: When Does it Work ?

Spiros N. Agathos

Unit of Bioengineering Faculty of Bioengineering, Agronomy & Environment Catholic University of Louvain Louvain-la-Neuve, Belgium

Limitations of bioremediation

- * Unfavourable conditions for microbial growth and activity
- * Lack of organisms expressing the appropriate catabolic potential
- * Metabolic misrouting
- * Lack of bioavailability of pollutants

Measures to overcome the limitations

* Biostimulation

* Bioaugmentation

- * Use of engineered strains
- * Use of solubilizing agents

What is bioaugmentation?

Improving the bio-removal capacity of soil or other biotope by inoculating specific competent strains or consortia

What are its premises?

Increasing the metabolic capacities of the indigenous microflora present in the biotope (soil, sediment, sludge, etc.) as a result of an exogenously augmented genetic diversity that leads to a wider repertoire of productive biodegradation reactions

How to evaluate success?

Sustainability, rate and extent of pollutant removal, regulatory compliance

UCL Unité de génie biologique

UCL/AGRO/CABI/**GEBI**

Action

Bioaugmentation Options

Mechanism

Add a preadapted strain

Certain sites may not contain adequate pollutant degrading microorganisms

Example

Inoculation of soils and WWTP with chloroaromatic degraders

Add preadapted consortia The presence of the right combination of microorganisms is ensured Seed sediments with PCBdechlorinating enrichment cultures

Add genetically optimized strains Existing degradation pathways may release dead-end or toxic intermediates

Construction of strains effecting complete simultaneous oxidation of chloro- and methyl-aromatics

Add genes packaged in a vector Genes encoding desirable functions are transferred into microorganisms already present Degradation of PCBs or pesticides

Chemical class	Examples	Application/source	Health effects
Nonhalogenated compounds			
Aromatic hydrocarbons	Benzene	Petroleum co-contaminant; chemical precursor	Toxic, carcinogenic
	Toluene	Petroleum co-contaminant	Irritant
Polycyclic aromatic hydrocarbons	Naphthalene	Mothballs, chemical precursor	Toxic
(PAHs)	Chrysene	Dye production	Toxic, suspected carcinogen
· · ·	Benzanthracene	Combustion product	Toxic, carcinogenic
Nitroaromatic compounds	Trinitrotoluene (TNT)	Explosives	Toxic, possible carcinogen
	Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)	Explosives, rat poison	Irritant, possible carcinogen
Metals	Mercury	Coal combustion product	Toxic
	Uranium	Nuclear power plants, weapons	Carcinogen
Halogenated aliphatics			
Chlorinated ethenes	Perchloroethene (tetrachloroethene)	Degreasing fluid	Depressant, suspected carcinogen
Organochlorines	Lindane	Insecticide	Irritant, neurotoxin, suspected carcinogen
Halogenated aromatics			
Chlorinated benzenes	Dichlorobenzene	Mothballs, chemical intermediate	Irritant, suspected carcinogen
	Dioxins	Combustion product	Chloracne, probable carcinogen
Polychlorinated biphenyls (PCBs)	Aroclor mixtures	Dielectric fluid, flame retardant	Chloracne, probable carcinogen

Persistent pollutants

Table 1

Source: Lyon & Vogel 2011

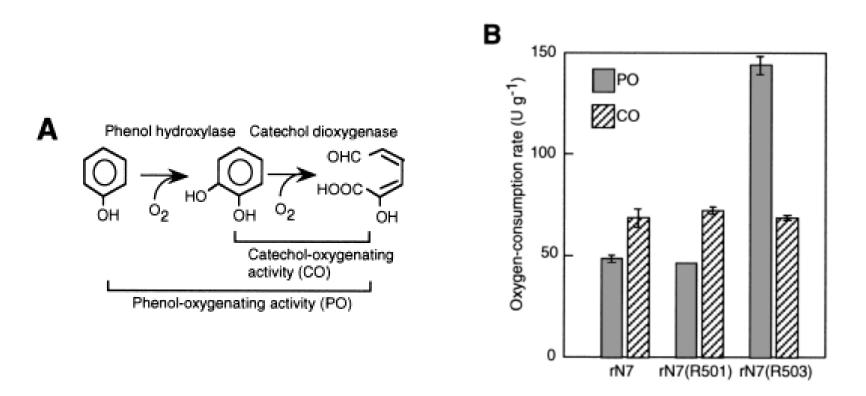
Ecological background of bioaugmented biotope can be a major barrier in the successful bioremediation performance of an exogenous inoculum

Relations of inoculated microorganisms with their biotic and abiotic environment (survival, activity, migration) can be determining factors in the outcome of a bioaugmentation strategy

Soil (and, to a lesser extent, sediment) is particularly recalcitrant to successful bioaugmentation due to the rapid decline in population size of active exogenously inoculated cells ("soil microbiostasis" or "obstinacy") generally attributed to both biotic and abiotic factors

Biotic factors are often more consequential (cf. inoculation of sterilized soil): predation, competition with autochthonous microorganisms for nutrients or eacceptors, presence of root systems releasing organic compounds, etc.

To improve the establishment and efficacy of an inoculant in soil, predictable ecological selectivity and/or ecological protection must be provided


	Fa	ctors influencing bacterial survival in soils
Origin	Factor	Effect
<u>Biotic</u>	Predation	Population size decrease
	Competition	Population size decrease/antagonistic effect on plant pathogens
	Root growth	Release of organic compounds, enhancing survival
<u>Abiotic</u>	Clay minerals	Protection against predation
	Water tension	High tension: water shortage, high osmolarity; low tension: anaerobiosis, increased nutrient availability by diffusion
	Organic carbon	Selection for copiotrophic or oligotrophic species; limited organic carbon results in starvation and reduction in activity
	Inorganic nutrients (N, P)	Limitation results in starvation
	рН	Selection for species; release of nutrients (e.g., P) or toxic compounds (e.g.,Al ³⁺).
	Temperature	Metabolic activity as well as biotic (predatory) pressure affected.
	Chemicals (toxic waste)	Inhibition of sensitive organisms; selection of biodegradative, resistant, or tolerant forms

Van Veen et al. 1997, Microbiol. Mol. Biol. Rev. 61: 121-135

Lessons from ecological studies of activated sludge, a dynamic biotope

Successful case study: stable augmentation introducing foreign catabolic genes into a dominant bacterium (Watanabe *et al.,* 2002)

Unsuccessful case study: instability due to massive augmentation with 'predable' bacterium (Bouchez *et al.,* 2000)

Phenol-oxygenating activity of rN7(R503)

A. Initial step of the bacterial phenol-degradative pathway. Strains R5 and rN7 employed extradiol dioxygenase for the degradation of catechol.

B. Phenol- and catechol-oxygenating activities of rN7, rN7(R501) and rN7(R503). The mean of three determinations is shown, and the error bar indicates the standard deviation.

Watanabe et al. (2002) Environ. Microbiol. 4(10): 577-583

El Fantroussi & Agathos 2005 Curr Opin Microbiol 8: 268-275

Table 1

Examples of r	recent bioaug	amentation s	tudies.
---------------	---------------	--------------	---------

Biotope	Microorganism(s)	Pollutant	Reference
Soil	Pseudomonas sp. strain ADP	Atrazine	[47]
	Agrobacterium radiobacter J14a	Atrazine	[48]
	Escherichia coli pAtzA	Atrazine	[10]
	Consortia degrading atrazine	Atrazine	[20]
	Alcaligenes eutrophus TCP	2,4,6-Trichlorophenol	[49]
	Desulfitobacterium frappieri PCP-1	Pentachiorophenol	[50]
	Ralstonia eutropha (pJP4)	2,4-Dichlorophenoxyacetic acid	[31]
	Ralstonia eutropha JMP134	2,4-Dichlorophenoxyacetic acid	[51]
	Pseudomonas sp. strain P51	1,2,4-Trichlorobenzene	[52]
	Pseudomonas pseudoalcaligenes POB310	3-Phenoxybenzoic acid	[53]
	Desulfomoni le tiedjei	3-Chlorobenzoate	[17]
	Arthrobacter sp. B1B and Relstonia eutrophus H850	Polychlorinated biphenyl	[34]
	Arthrobacter RP17	Phenanthrene	[54]
	Relstonia basilensis RK1	2,6-Dichlorophenol	55
	Encapsulated consortium	Gasoline	[28]
Activated sludge	Comamonas sp. RN7(R503)	Phenol	[24]
	Comamonas testosteroni 12	3-Chloroaniline	[56]
	Candidatus Accumulibacter phosphatis	Phosphorus	[36]
	Desulfitobacterium frappieri PCP-1	Pentachlorophenol	[37,38]
Aquifer/groundwater	Methanogenic consortia	BTEX	[19*]
	Pseudomonas stutzeri KC	Carbon tetrachloride	[15]
	Consortium that contains Dehalococcoides	Chloroethenes	[2]
	Consortium that contains Dehalococcoides	Chloroethenes	[46]
	Consortium that contains Dehalococcoides	Chloroethenes	[16]
	P. putida GJ31, P. aeruginosa RHO1 and P. putida F1∆CC	Chlorobenzenes	[27]
	Butane-utilizing enrichment culture	1,1,1-Trichloroethane	[57]
	Hydrogenophaga flava ENV735	Methyl tert-butyl ether	[35]
	β-proteobacterium strain PM1	Methyl tert-butyl ether	[58*]

El Fantroussi & Agathos 2005 Curr Opin Microbiol 8: 268-275

Table 1

Examples of recent bioaugmentation studies	Examples	of recent	bioaugmen	tation stu	udies.
--	----------	-----------	-----------	------------	--------

Biotope	Microorganism(s)	Pollutant	Reference
Soil	Pseudomones sp. strain ADP	Atrazine	[47]
	Agrobacterium radiobacter J14a	Atrazine	[48]
	Escherichia coli pAtzA ***********************	Atrazine	[10]
	Consortia degrading atrazine	Atrazine	[20]
	Alcaligenes eutrophus TCP	2,4,6-Trichlorophenol	[49]
	Desulfitobacterium frappieri PCP-1	Pentachiorophenol	[50]
	Ralstonia eutropha (pJP4)	2,4-Dichlorophenoxyacetic acid	[31]
	Ralstonia eutropha JMP134	2,4-Dichlorophenoxyacetic acid	[51]
	Pseudomonas sp. strain P51	1,2,4-Trichlorobenzene	[52]
	Pseudomonas pseudoalcaligenes POB310	3-Phenoxybenzoic acid	[53]
	Desulfomonile tiedjei	3-Chlorobenzoate	[17]
	Arthrobacter sp. B1B and Ralstonia eutrophus H850	Polychlorinated biphenyl	[34]
	Arthrobacter RP17	Phenanthrene	[54]
	Ralstonia basilensis RK1	2,6-Dichlorophenol	55
	Encapsulated consortium	Gasoline	[28]
Activated sludge	Comamonas sp. RN7(R503)	Phenol	[24]
-	Comamonas testosteroni 12	3-Chloroaniline	[56]
	Candidatus Accumulibacter phosphatis	Phosphorus	[36]
	Desulfitobacterium frappieri PCP-1	Pentachlorophenol	[37,38]
Aquifer/groundwater	Methanogenic consortia	BTEX	[19"]
	Pseudomonas stutzeri KC ************************	Carbon tetrachloride	[15]
	Consortium that contains Dehalococcoides	Chloroethenes	[2"]
	Consortium that contains Dehalococcoides ***********	Chloroethenes	[46]
	Consortium that contains <i>Dehalococcoid</i> es *********	Chloroethenes	[16]
	P. putida GJ31, P. aeruginosa RHO1 and P. putida F1∆CC	Chlorobenzenes	[27]
	Butane-utilizing enrichment culture	1,1,1-Trichloroethane	[57]
	Hydrogenophaga flava ENV735	Methyl tert-butyl ether	35
	β-proteobacterium strain PM1 *****************	Methyl tert-butyl ether	[58°]

********** In situ

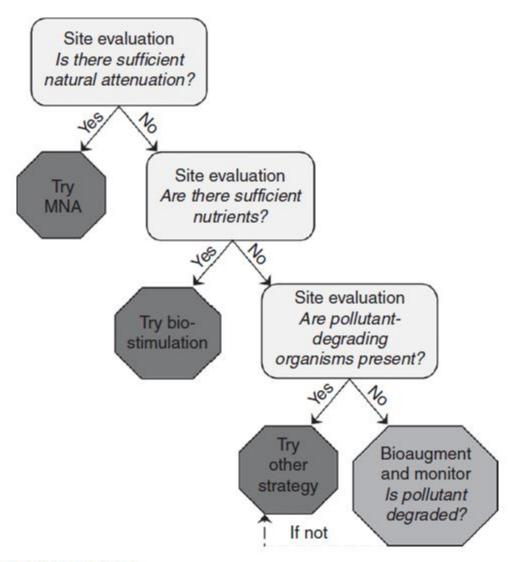
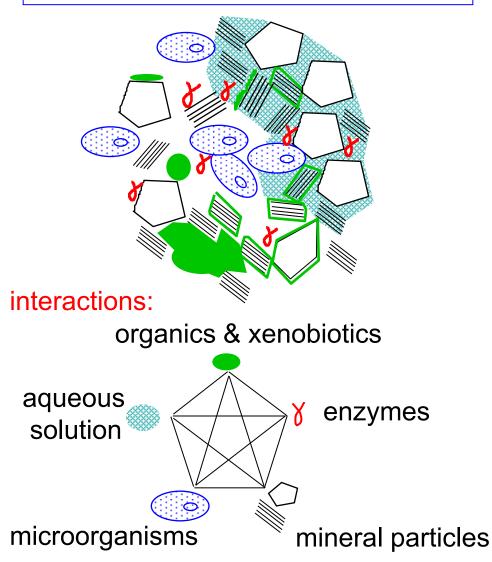
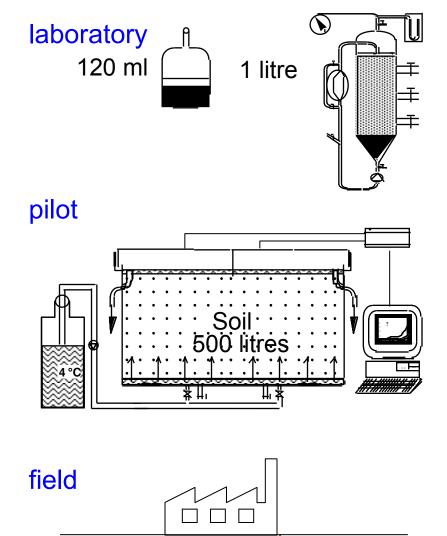


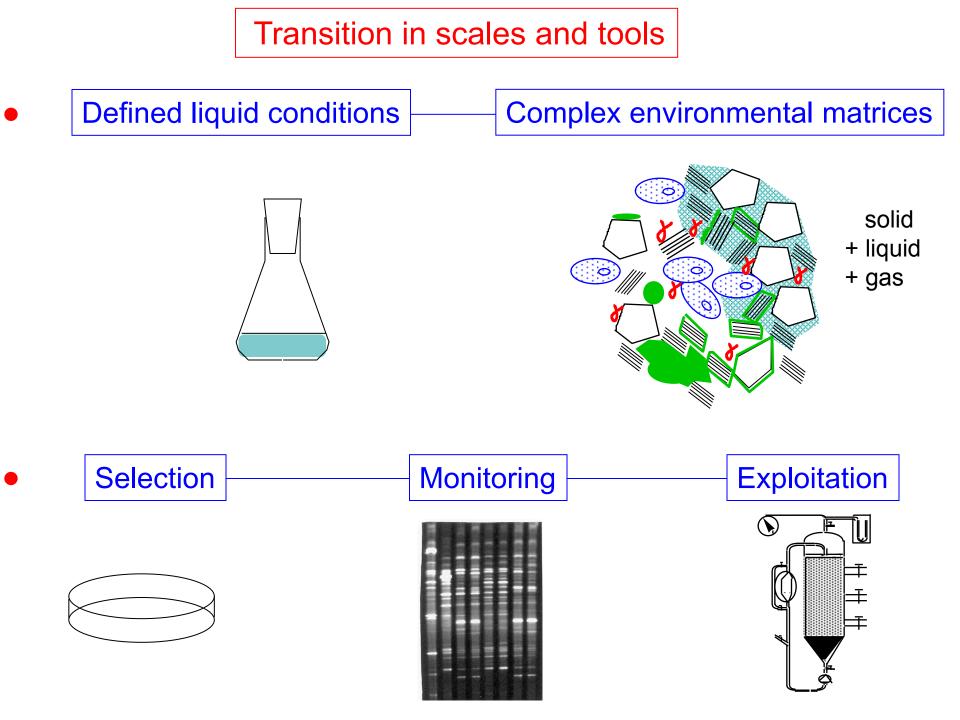
Figure 1 Decision-making process for bioaugmentation.

Source: Lyon & Vogel 2011


Table 2	Commercially available bioaugmentation inocula ta	rgeting chlorinated ethenes
Manufactu	rer (Web site)	Product name
Regenesis SiREM (ww	diation (www.eosremediation.com) (www.regenesis.com) vw.siremlab.com) Group, Inc. (www.shawgrp.com)	TCA20 [™] , PJKS-1 [™] , BAC-9 [™] Bio-Dechlor Inoculum [™] Plus KB-1 [®] , KB-1 [®] Plus Shaw Dechlorinating Culture – SDC9 [™]

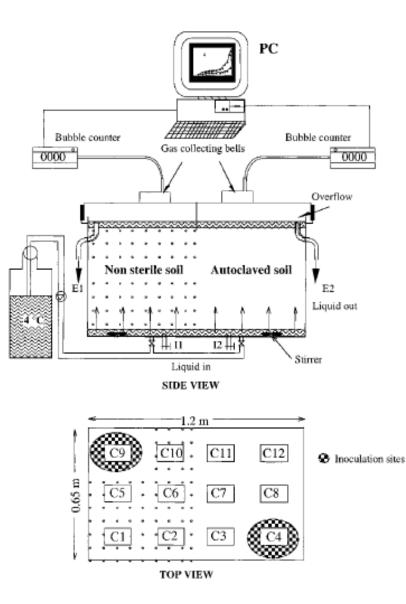
. * . .

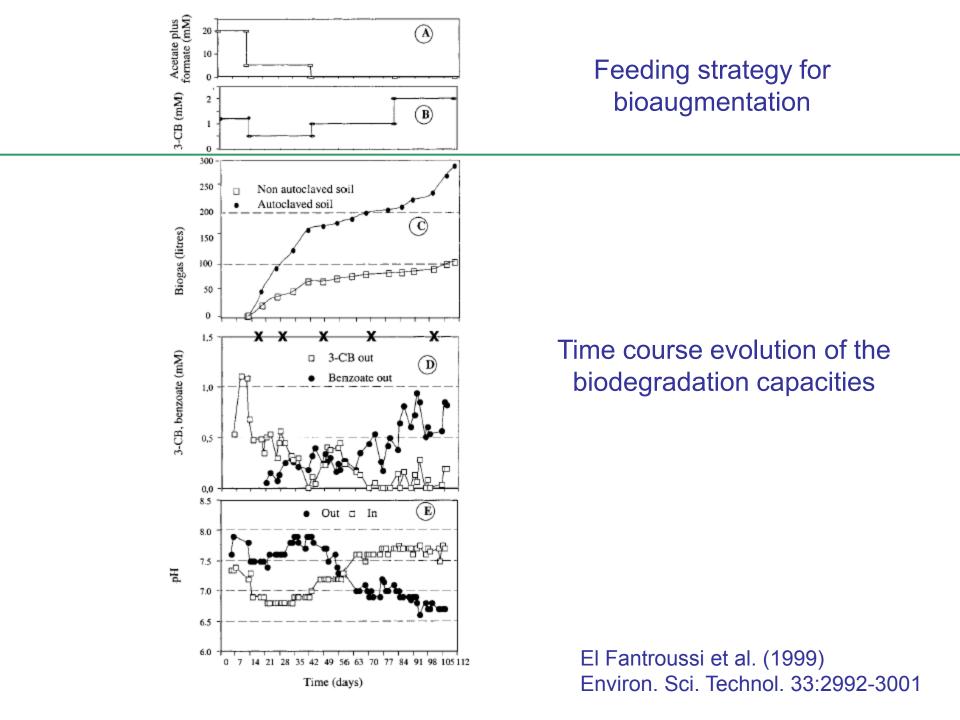

Source: Lyon & Vogel 2011


Scientific expertise needed

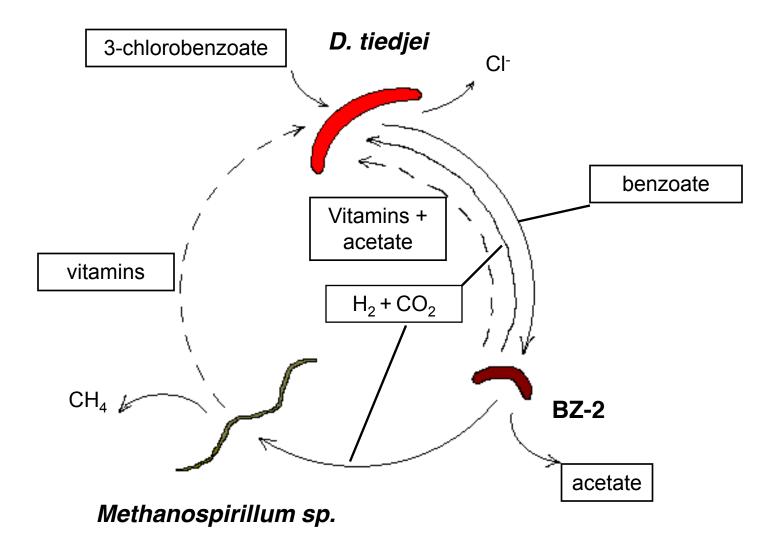
Microscopic biological, biochemical and physico-chemical phenomena

Bioreactor / bioprocess engineering

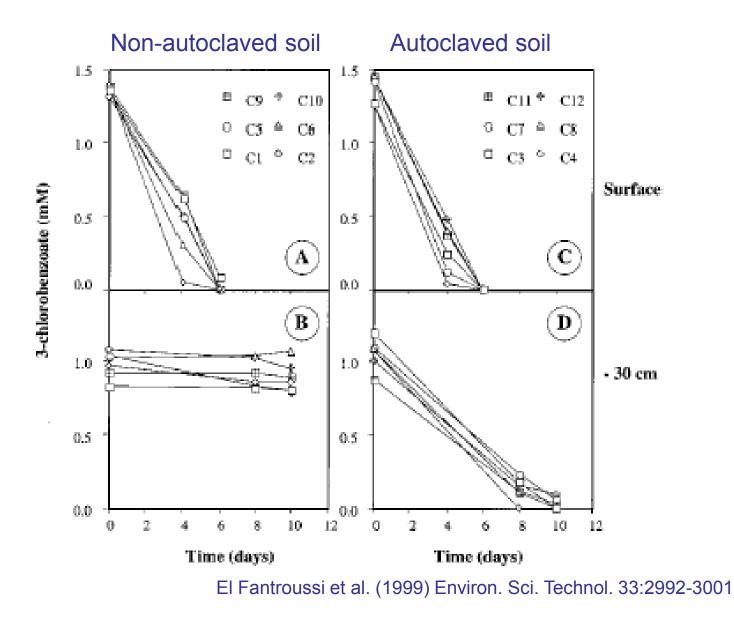



Bioaugmentation of a Soil Bioreactor Designed for Pilot-Scale Anaerobic Bioremediation Studies

Case study: Introduction of a pure strain, Desulfomonile tiedjei

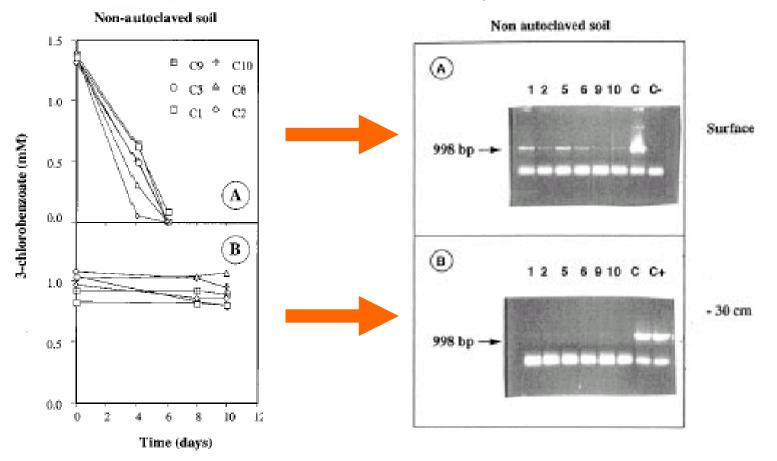

El Fantroussi et al. (1999) ES&T

Schematic view of the soil bioreactor



Syntrophic relationships in a defined consortium growing on 3CB

Redrawn from WW Mohn and JM Tiedje (1992) Microbiol. Rev. 56: 482-507


3-CB biodegradation in soil samples taken from different compartments and at different depths

Linking bioaugmentation to biodegradation

Microcosms

PCR detection of the 16S rRNA of *D. tiedjei* in the bioreactor

PCR detection of the 16S rRNA of *D. tiedjei*

TABLE 3. Correlation between 3-Chlorobenzoate (3-CB)Dechlorination Activity and PCR Detection of the 16S rDNAGene of D. tiedjei Using Soil Samples Taken from DifferentAreas in the Reactor at 30 cm of Depth over Time^a

	nona	autocl	aved	autoclaved		ed
	C1	C6	С9	C4	C7	C12
13 days 3-CB transformation	_	_	+	_	_	_
13 days PCR detection	_	—	+	_	_	—
24 days 3-CB transformation		_	+	_		—
24 days PCR detection		_	+	$(+/-)^{b}$		_
43 days 3-CB transformation		_	—	+	+	+
43 days PCR detection		_	+	+	+	+
62 days 3-CB transformation		_	+	+	+	+
62 days PCR detection	_	_	+	+	+	+
93 days 3-CB transformation	_	_	—	+	+	+
93 days PCR detection	_	_	_	+	+	+

^a The samples were incubated for 10 days in the presence of 2 mM 3-CB. C1–C12 indicate the different compartments in the reactor. ^b Signal not detected by normal one-round PCR but by a nested PCR procedure using primers previously described (12).

PCR detection of the 16S rRNA of *D. tiedjei*

TABLE 3. Correlation between 3-Chlorobenzoate (3-CB)Dechlorination Activity and PCR Detection of the 16S rDNAGene of D. tiedjei Using Soil Samples Taken from DifferentAreas in the Reactor at 30 cm of Depth over Time^a

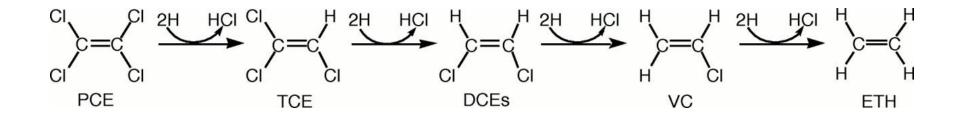
	nona	autocl	aved	auto	clave	ed
	C1	C6	C9	C4	C7	C12
13 days 3-CB transformation	_	_	(\rightarrow)	_	_	\bigwedge
13 days PCR detection	_	_	$ +\rangle$	_	_	$ -\rangle$
24 days 3-CB transformation	_	_	+	_	_	-
24 days PCR detection	_	_	+	$(+/-)^{b}$	_	—
43 days 3-CB transformation	—	_	—	+	+	+
43 days PCR detection	—	_	+	+	+	+
62 days 3-CB transformation	—	—	+	+	+	+
62 days PCR detection	—	_	+	+	+	+
93 days 3-CB transformation	_	_	$\setminus - $	+	+	$\left + \right $
93 days PCR detection	—	_		+	+	$\downarrow +/$

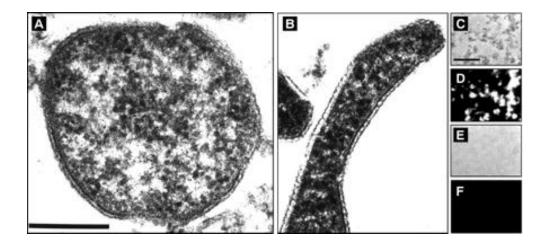
^a The samples were incubated for 10 days in the presence of 2 mM 3-CB. C1–C12 indicate the different compartments in the reactor. ^b Signal not detected by normal one-round PCR but by a nested PCR procedure using primers previously described (12).

PCR detection of the 16S rRNA of *D. tiedjei*

TABLE 3. Correlation between 3-Chlorobenzoate (3-CB)Dechlorination Activity and PCR Detection of the 16S rDNAGene of D. tiedjei Using Soil Samples Taken from DifferentAreas in the Reactor at 30 cm of Depth over Time^a

	nona	autocl	aved	autoclaved		ed
	C1	C6	C9	C4	C7	C12
13 days 3-CB transformation	_	_	+	_	_	_
13 days PCR detection	—	_	+	_	—	_
24 days 3-CB transformation	—	_	+	_	—	_
24 days PCR detection	_	_	+	$(+/-)^{b}$	_	_
43 days 3-CB transformation	—	_	-	+	+	+
43 days PCR detection	—	_	+	+	+	+
62 days 3-CB transformation	—	_	+	+	+	+
62 days PCR detection	—	_	+	+	+	+
93 days 3-CB transformation	—	_	-	+	+	+
93 days PCR detection	—	—	—	+	+	+


^a The samples were incubated for 10 days in the presence of 2 mM 3-CB. C1–C12 indicate the different compartments in the reactor. ^b Signal not detected by normal one-round PCR but by a nested PCR procedure using primers previously described (12).


Biomolecular monitoring

Fingerprinting of microbial communities at several locations and times in the bioreactor

DGGE analysis of 16s rDNA Location in the bioreactor Day of sampling: 24 63 Jaccard coefficient Day of sampling Location in 100 50 the bioreactor: 7496 7496 C9 - 63 C9 - 24 C6 - 24 C6 - 63 SC4-63 SC7-63 autoclaved soil SC4-24 SC7-24 J El Fantroussi et al. (1999) Environ. Sci. Technol. 33:2992-3001

Dehalococcoides ethenogenes strain 195


Leaders in Accelerated Natural Attenuation

Bio-Dechlor INOCULUM™

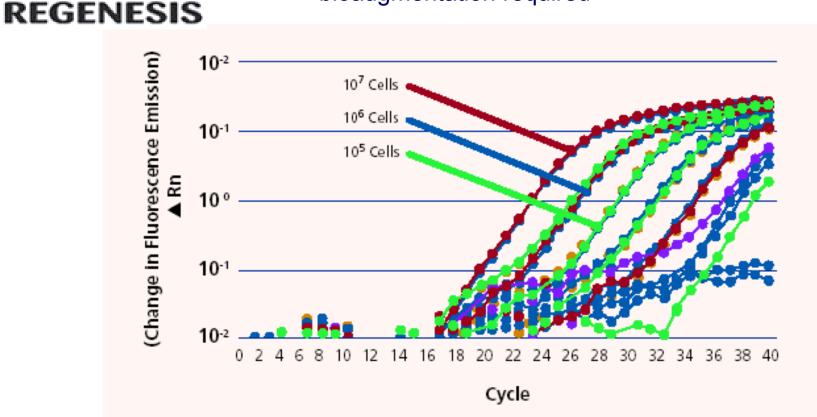
- An enriched natural microbial consortium of *Dehalococcoides* sp.
- Offers accelerated dechlorination of PCE, TCE, DCE, VC
- Commercially available in liquid form
- Developed at Dr Frank Loeffler's laboratory, Georgia Institute of Technology

http://www.regenesis.com/products/bd_inoculum/

First bioaugmentation study

PCE: tetrachloroethene, TCE: trichloroethene, DCE: dichloroethene, VC: vinyl chloride

The bioaugmented test plot clearly indicates complete dechlorination immediately following inoculation, while DCE levels are consistent in the non-bioaugmented control.


Lendvay, J.M. et al. Preventing contaminant discharge to surface waters: plume control with bioaugmentation. Bioaugmentation, Biobarriers and Biogeochemistry, *Proceedings from the Sixth International In Situ and On-Site Bioremediation Symposium.* 19-26 (2007)

Bio-Dechlor CENSUSSM

- Quantitative detection of *Dehalococcoides* by use of real time PCR

- Allows proper assessment of sites regarding natural biodegradation and helps define the degree of bioaugmentation required

Real-Time PCR Amplification of 10-fold dilutions of genomic DNA derived from *Dehalococcoides*

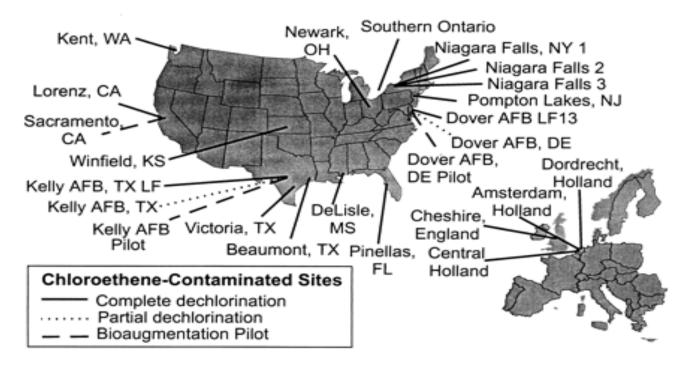
• E.K. Nyer, F. Payne & S. Suthersan (2003) *Ground Water Monitoring & Remediation* 23, 1, 36-45, based on ARCADIS field data on >125 site dechlorination projects:

1• Biostimulation (proper biogeochemical management of native microbial communities) can achieve complete reductive dechlorination

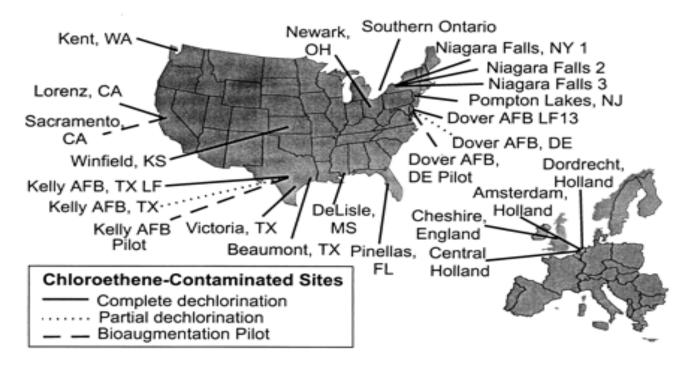
2• **Bioaugmentation** may shorten the lag phase within a short distance from the injection wells but is not required to assure full in situ dechlorination

3• Because it is not necessary to constrain hydrogen levels for the benefit of inoculated *Dehalococcoides* sp., it is also not necessary to limit rates of e- donor consumption by using "designer" slow release substrates

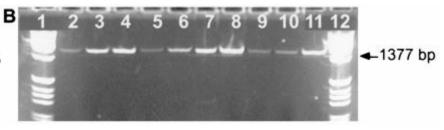
Controversy (2)


D. Major, E. Edwards, P. McCarty, J. Gossett, E. Hendrickson, F. Loeffler, S. Zinder, D. Ellis, J. Vidumsky, M. Harkness, G. Klecka, E. Cox (2003) *Ground Water Monitoring & Remediation* 23, 2, 32-48:

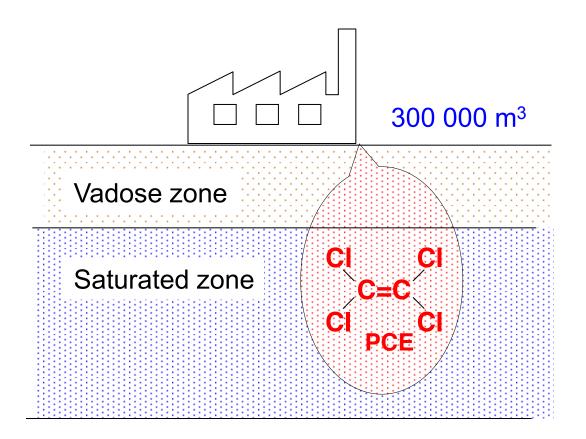
1• All mixed cultures dechlorinating PCE or TCE beyond cDCE to ethene contain organisms in the *Dehalococcoides* phylogenetic group


2• Bioaugmentation with *Dehalococcoides* was required to further dechlorinate cDCE to ethene and the introduced organism could migrate through the aquifer in field-scale demonstrations (Dover and Kelly AFB)

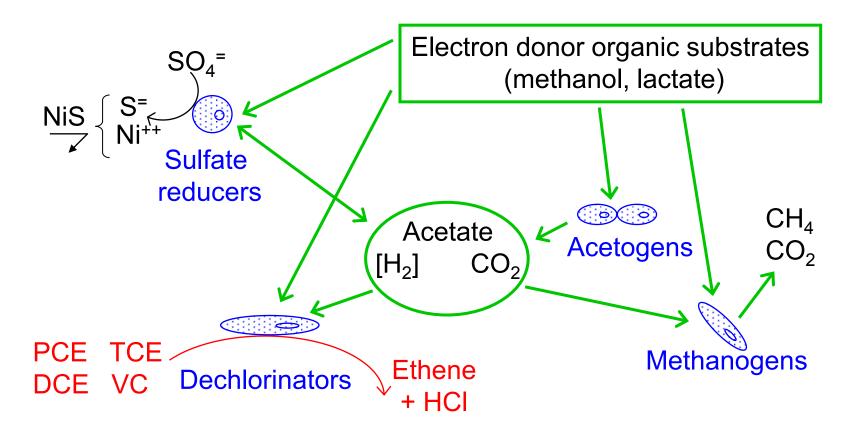
3• Microbial consortia are involved in complete dechlorination and in creating conditions for growth of halorespirers, but the latter are not present at every site, hence addition of cultures containing *Dehalococcoides* is a must.

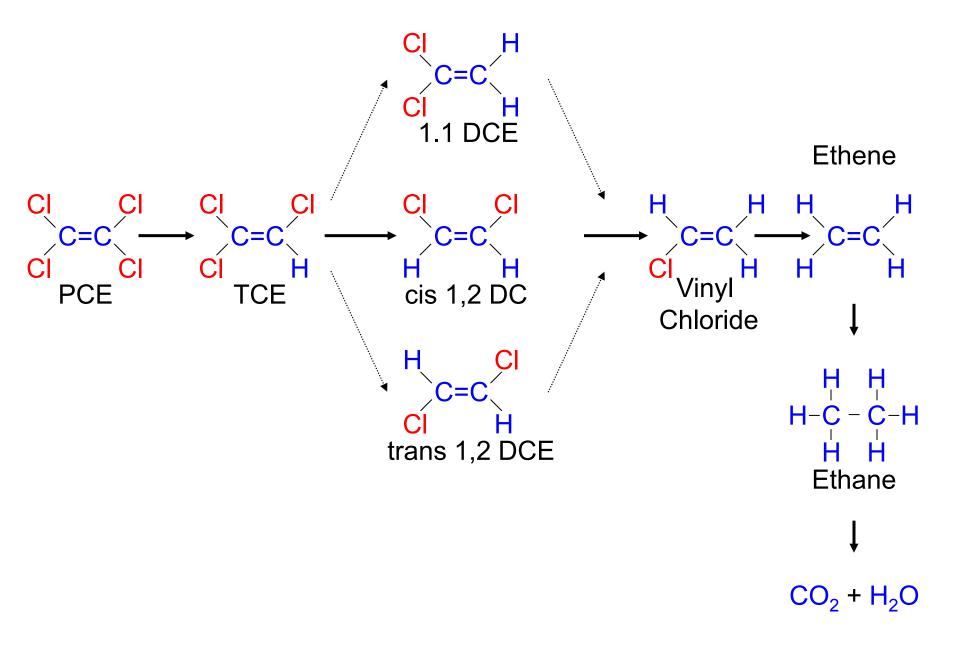

Molecular Analysis of *Dehalococcoides* 16S Ribosomal DNA from Chloroethene-Contaminated Sites throughout North America and Europe

Molecular Analysis of *Dehalococcoides* 16S Ribosomal DNA from Chloroethene-Contaminated Sites throughout North America and Europe

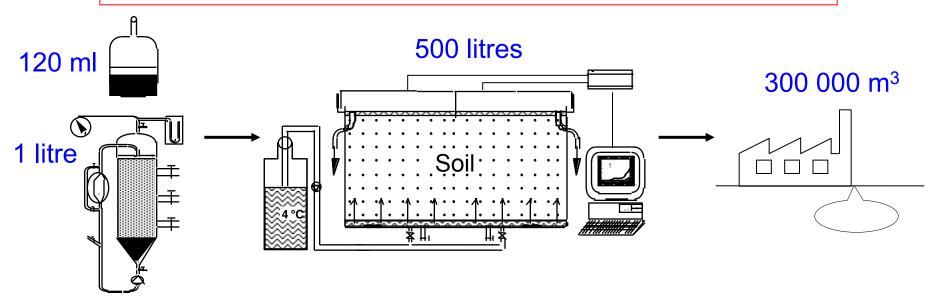

PCR with primers Fp DHC 1 and Rp DHC 1385 targeting 16S rRNA of *Dehalococcoides*

Hendrickson et al. 2002. *Applied and Environmental Microbiology* 68:485-495.

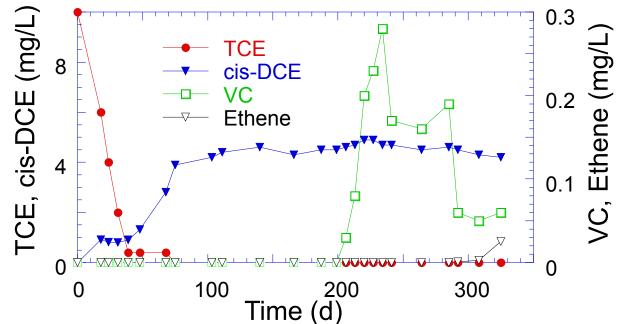

Bioremediation of sediments contaminated by chloro-organic solvents: Indigenous consortia and biogeochemical management or bioaugmentation?


Case story: The former « Dravo » site at Bunnik, The Netherlands

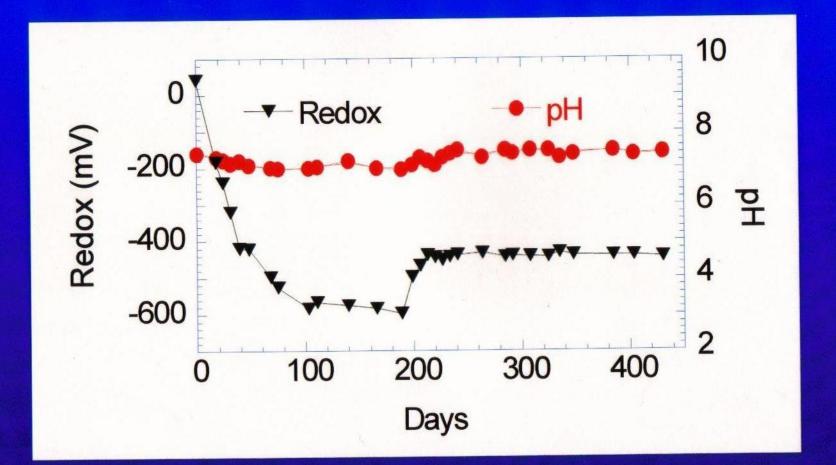
Microbial ecology & physico-chemical environment

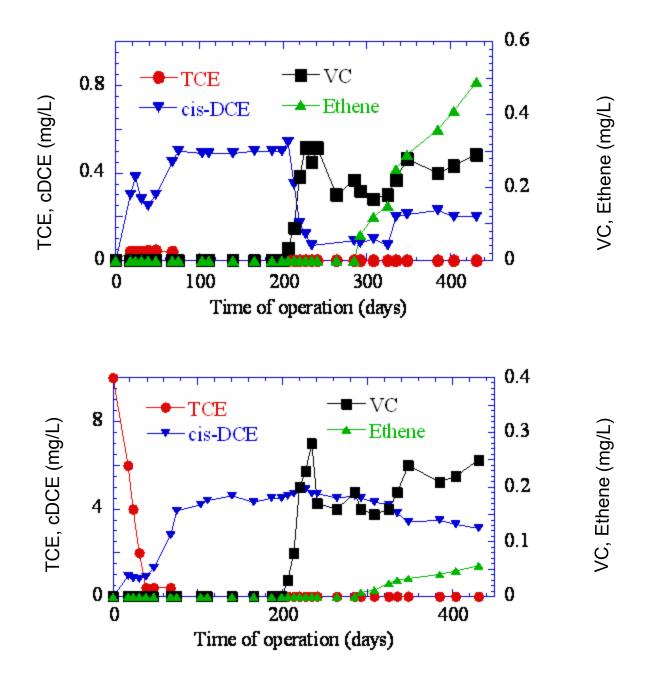

- Consortium of anaerobic microorganisms
- Low redox potential
- Neutral pH
- Cometabolic substrates
- Potential for biostimulation & bioaugmentation

Metabolic pathway of PCE anaerobic dechlorination



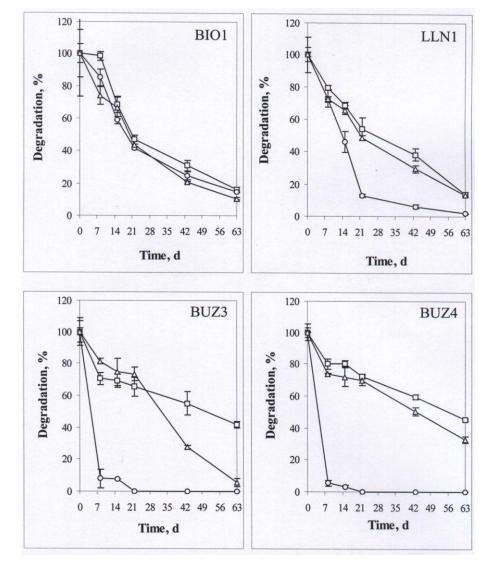
Scale-up from the laboratory to the pilot to the field




Transformation of chloro-ethenes in the pilot bioreactor

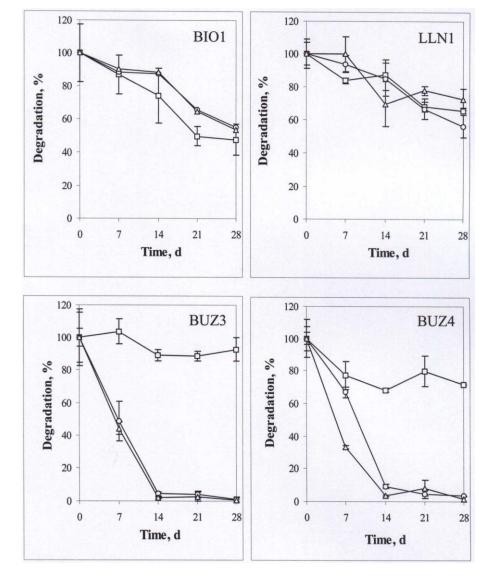
El Mamouni et al (2002) Wat Sci Technol 45, 49-54

pH and Redox Potential



Bioaugmentation of Soil with Atrazine Degrading Microbial Communities

Goux et al. AMB (2000); WASP: Focus (2003)


Physico-chemical characteristics of the soils tested

Soils	Туре	pH (Water)	% N	% Organic Carbon	C/N
BIO1	Sandy soil, compost & straw (50:25:25)	5.7	0.33	9.59	29.06
BUZ3	Loamy	8.5	0.10	0.88	8.8
BUZ4	Loamy	7.9	0.14	1.22	8.71
LLN1	Loamy	6.1	0.15	1.66	11.07

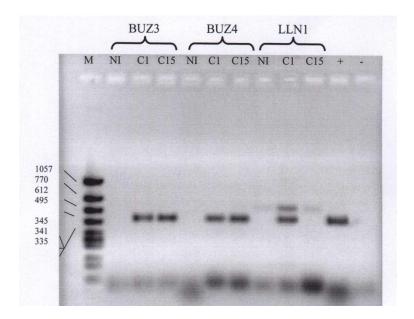


Figure 1. Degradation of atrazine in the soils immediately after inoculation.

Squares = non-inoculated soils; circles = soils inoculated with COM1; triangles = soils inoculated with COM15. With the exception of two BIO1 samples (see error bars), 95% confidence intervals were always lower than 5%.

<u>Figure 2.</u> Degradation of atrazine in the soils nine months after inoculation. Squares = non-inoculated soils; circles = soils inoculated with COM1; triangles = soils inoculated with COM15. Error bars were 95% confidence intervals.

Figure 3. *atzA* detection in soils nine months after inoculation and 28 days after second atz addition.

Lanes: (M) size marker, fragment sizes are given in bp; NI = non-inoculated; C1, C15 = inoculated with COM1 or COM15, respectively; (+) positive control; (-) negative control. Expected size of the amplified fragment: 528-bp.

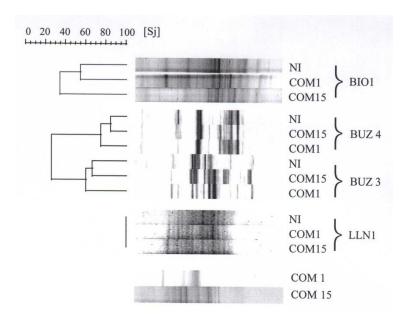


Figure 4. DGGE analysis of 16S rDNA fragments from the soils inoculated with COM1 and COM15 and from pure cultures of the communities. The dendrogram of relatedness is based on the Jaccard coefficient (Sj). NI = Not Inoculated.

Unité de génie biologique

UCL/AGRO/CABI/GEBI

- If target pollutant is very recalcitrant, a GEM, pure isolate or defined consortium capable of mineralizing it may gain a strong competitive advantage (ecological selectivity) upon inoculation in situ, provided the local abiotic conditions are favorable
- If a temporal effect is required, e.g., batchwise removal of pollutants aided by physicochemical interventions (landfarming, bioventing, etc.) the introduced strain need not have a long-term survival
- A GEM acting as donor of catabolic genes to unknown autochthonous recipients can enhance the mineralizing capability of the indigenous flora, but care must be taken against uncontrolled HGT (e.g., resistance markers)
- A GEM inoculant constructed using as host a bacterium representing the dominant population in the biotope may be a good candidate for successful survival, growth and activity

UCL/AGRO/CABI/GEBI

Spatially organized habitats (granular sludge, riverbank sludge, biofilms) can promote enhanced HGT from an inoculant to the indigenous microflora

Strategies (2)

- Introduction of inoculant immobilized in appropriate carrier material or encapsulation matrix for long-term protection and slow release may prove advantageous in situ
- Dual bioaugmentation (e.g., metal-detoxifyer plus organicdegrader) or, more generally, multiple inoculation for cocontaminated sites holds promise
- Bottom line: Extensive, stringently validated field-scale studies of these (& other!) bioaugmentation strategies are key to success

UCL/AGRO/CABI/GEBI

- Adaptation of "superbugs" into a robust and versatile suite of quasi-universal "heirloom microorganisms" (Singer et al. 2005) for complex polluted sites (*Deinococcus radiodurans*, *Sphingomonas* EPA 505, *Burkholderia xenovorans* LB400, *Pseudomonas* sp. ADP, etc)
- Enhancement of the resilience of biodegradative strains by rhizo-directed strain selection (Kuiper et al. 2004)
- Use of "activated" soil or sediment with the same characteristics as the target site by "priming" the strain or consortium of interest to site conditions (biostimulation with the pollutant(s), Gentry et al., 2004)

UCL Unité de génie biologique

Acknowledgements

UCL/AGRO/CABI/**GEBI**

The people:

Dr. Saïd El Fantroussi Dr. Rachid El Mamouni Dr. Sébastien Goux Hélène-Christine Massart Dr. Luc Pussemier (VAR) Dr. Oliver Drzyzga (RUG) Dr. Jan Gottschal (RUG) Roger Jacquet (Solvay)

The funding:

European Commission – 4th & 5th Framework Programmes UCL (Fonds Spéciaux de Recherche) Walloon Regional Government (DGTRE) Fonds National de la Recherche Scientifique (FNRS)