

Università degli Studi di Cassino e del Lazio Meridionale

Tampere University of Technology

Summer School on Contaminated Soils «From characterization to remediation»

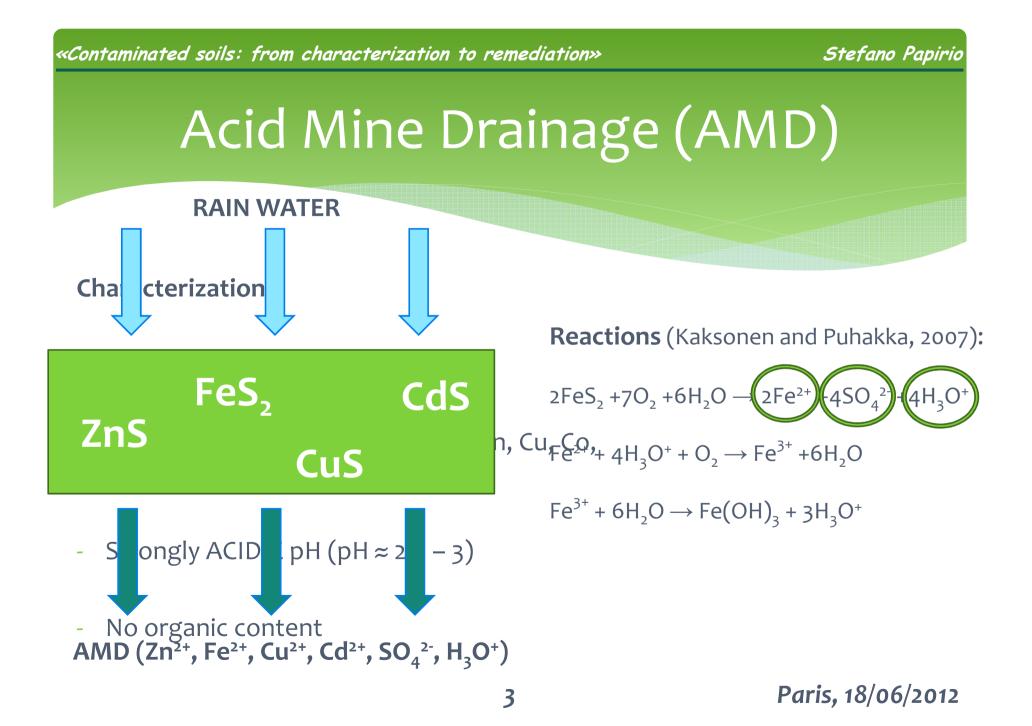
Biological fluidized-bed reactors for the treatment of sulfate- and nitrate-containing mine waters

PhD student: M.Sc. Stefano Papirio

Supervisors:

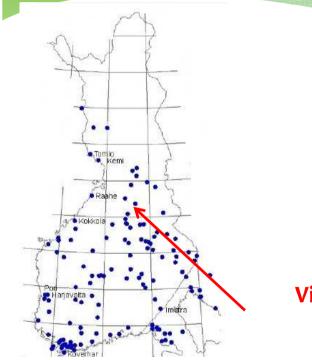
Dr. Giovanni Esposito Prof. Francesco Pirozzi Prof. Jaakko Puhakka

Stefano Papirio


* Introduction

* Materials and Methods

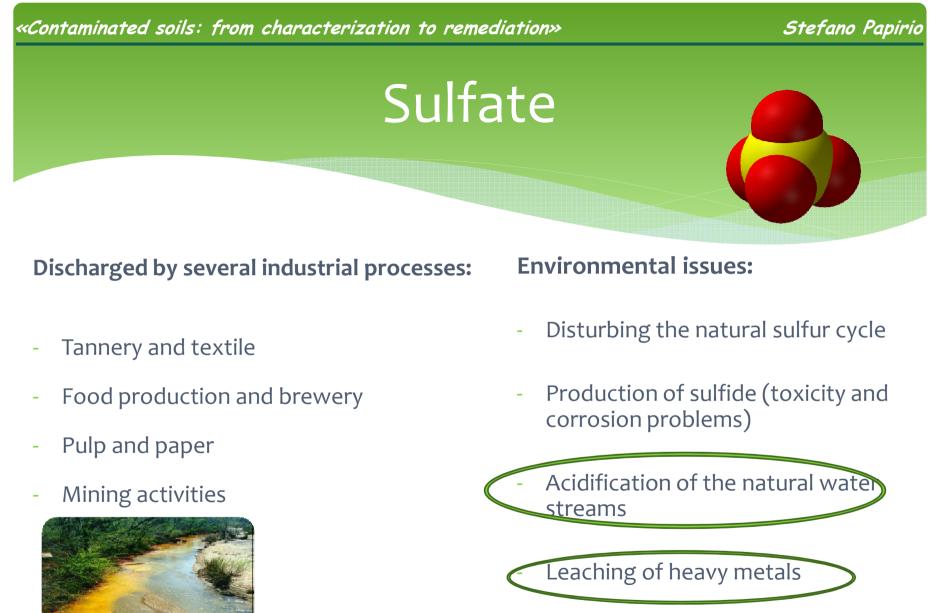
* Results



* Conclusions

Stefano Papirio

AMD - Finland



Visiting SOTKAMO ines have mine for the exploita

Bioleaching of Fe, Cu, Ni, Co, As 66% of metal or

e history of mining

ACID MINE DRAINAGE

5

Environmental issues due to the release of NO₃⁻ ions into the environment:

- Change of the NATURAL NITROGEN CYCLE
- EUTROPHICATION and influence on the trophic equilibria of the ecosystems
- Contamination of ground waters used as sources of drinking water
- Human health damages («Blue baby syndrome» and development of other diseases) (Environmental Agency, 2005)

Stefano Papirio

Materials and Methods

DENITRIFICATION 12N₂ + 20CO₂ + 18H₂O + 24OH⁻ Up-flow fluidized-bed reactors

Batch tests (pH effect and metal toxicity)

SULFATE REDUCTION Down-flow fluidized-bed reactors ORGANIC SUBSTRATES ALKALINITY

BIOGENIC SULFIDE

Materials and Methods - UniCas

Two DFFB reactors – volume 5,7 L

- Carrier material: polypropylene beads
- Fluidization degree: 10%
- Electron donor: lactic acid
- HRT: 24 h
- Room temperature

Reactor 1 $COD/SO_4^{2-} = 0,67$ pH ≈ 5 **Reactor 2** $COD/SO_4^{2-} = 3 \div 4$ $pH \approx 3 \div 5$

Goal of the research: optimization of the sulfate-reducing process

- Evaluation of the best COD/SO₄²⁻

- Robustness test \rightarrow decrease of the feed pH

- Reliability of the carrier material for the biomass immobilization

Stefano Papirio

Materials and Methods - TUT

Two classical FBRs – volume 1,1 L

- Carrier material: granular activated carbon (GAC)
- Fluidization degree: 25%
- Electron donor: ethanol
- **HRT:** 6-9 hours

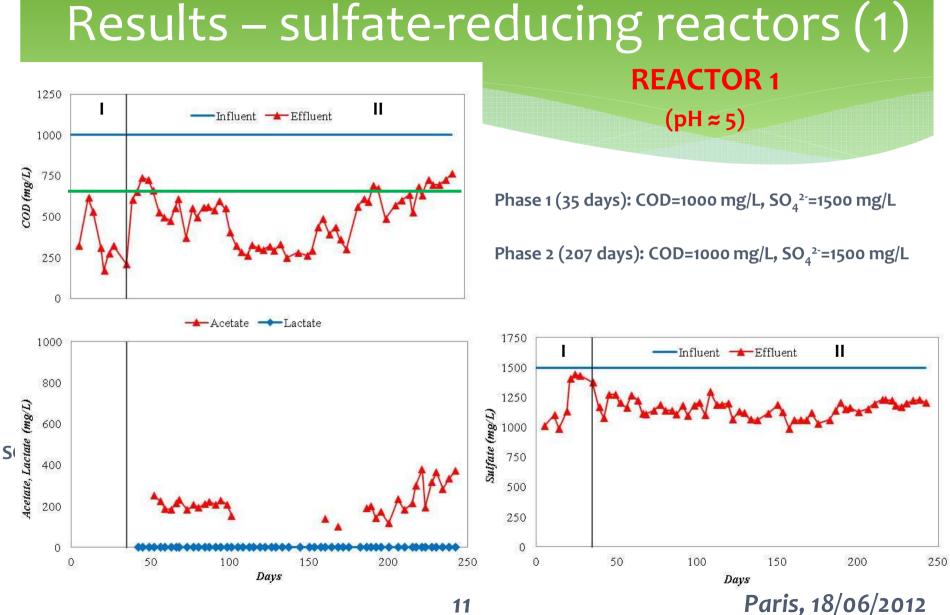
Reactor 1 Temperature $\approx 8 \div 9^{\circ}$ C

Reactor 2 Room temperature $\approx 22^{\circ}C$

Batch assays

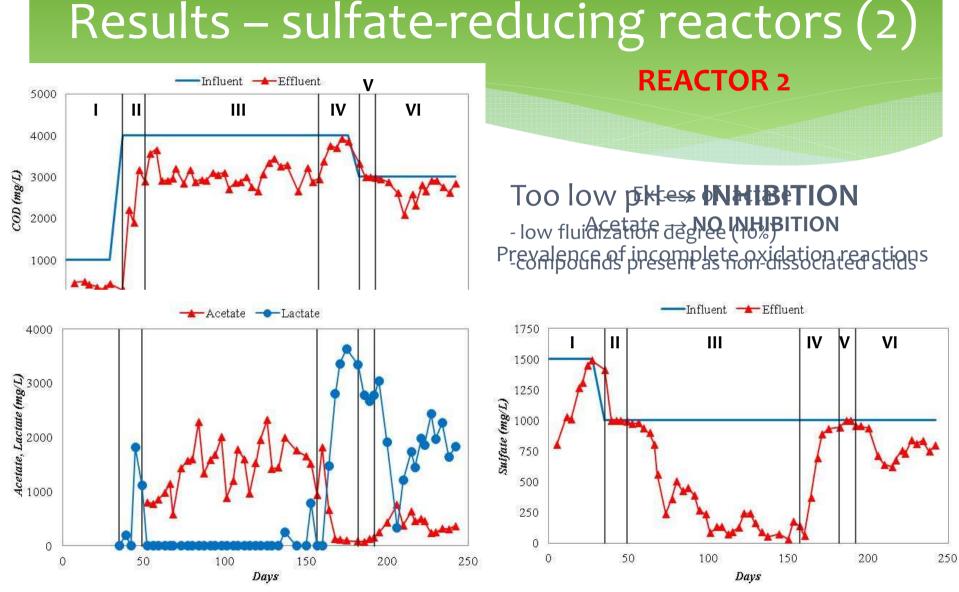
- Determination of the lowest tolerable pH

- Metal toxicity (Cu, As, Co, Ni)

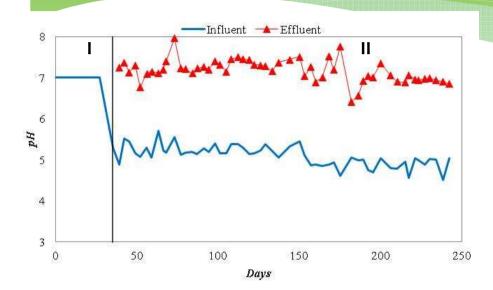

Bacterial community analysis - PCR, DGGE

Goal of the research: optimization of the denitrification process

- Amount of ethanol to supply
- Effect of toxic metals on the biological process


- Gradual decrease of the feed pH
- Influence of the temperature
 - Paris, 18/06/2012

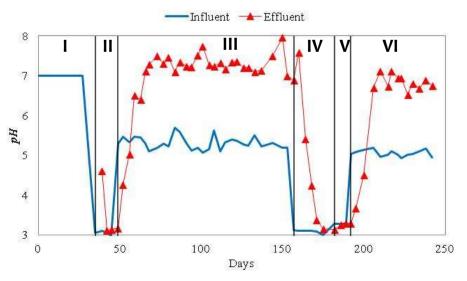
Stefano Papirio


11

Stefano Papirio

Stefano Papirio

Results – sulfate-reducing reactors (3)



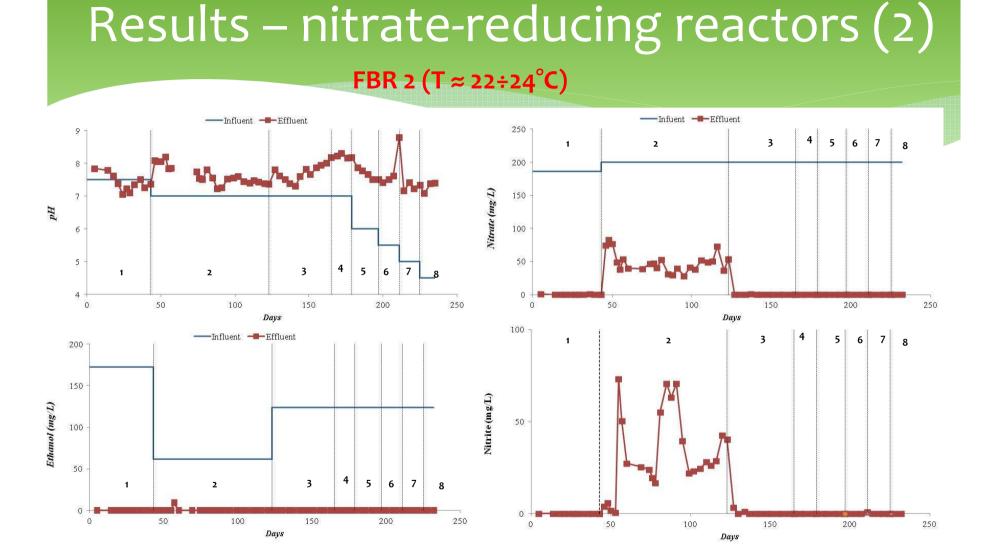
REACTOR 1

Feed pH \approx 3 \rightarrow **INHIBITION**

Feed pH $\approx 5 \rightarrow$ **NEUTRALIZATION** (production of HCO₃⁻) - pH evolution

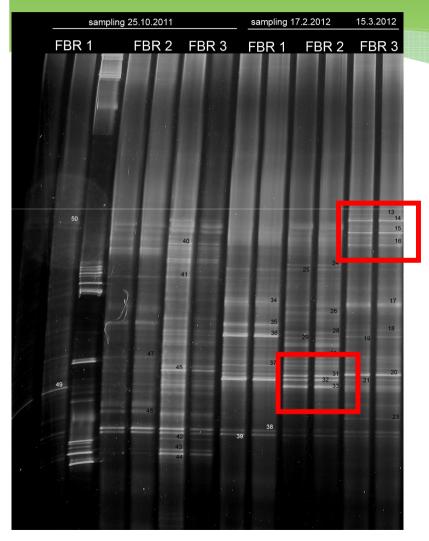
REACTOR 2

Paris, 18/06/2012


13

Stefano Papirio

Results – nitrate-reducing reactors (1) FBR 1 (T \approx 8÷9°C) Nitrate (mg/L) pH5 208 Days Days Influent -Effluent Vitrite (mg/L) Ethanol (mg/L) Days Days $1 \rightarrow 2$: batch \rightarrow continuous flow $6\mathrm{NO_3}^{-} + \mathrm{CH_3CH_2OH} \rightarrow 6\mathrm{NO_2}^{-} + 2\mathrm{CO_2} + 3\mathrm{H_2O}$ $2 \rightarrow 3$: ethanol concentration has been doubled


 $3 \rightarrow 4$: decrease of HRT from 9 to 6 hours Other phases: decrease of feed pH

Stefano Papirio

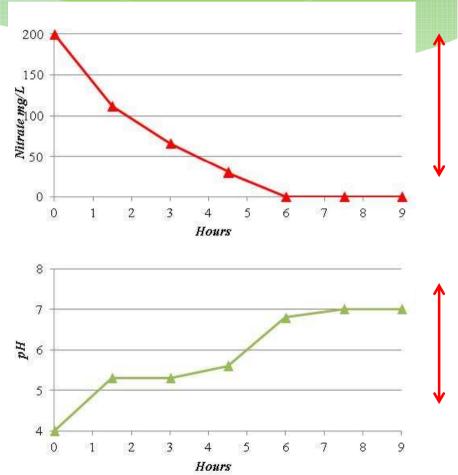
Stefano Papirio

Results – nitrate-reducing reactors (3)

*	13. Niabella sp. (94%)/Bacteroidetes
*	15. Terrimonas lutea (96%)/Bacteroidetes (denitrification)
*	16. Terrimonas lutea (96%)/Bacteroidetes (denitrification)
*	17. ō-proteobacteria
*	19. β-proteobacteria
*	20. Azospira restricta (98%)/ β -proteobacteria (nitrogen-fixing)
*	21. Dechloromonas sp. / eta -proteobacteria (chlorate-reducing
*	23. Piscinibacter aquaticus/ β -proteobacteria
*	30. Dechloromonas sp. (98%)/β-proteobacteria (chlorate-reducing)
*	31. Hydrogenophaga caeni (99%)/ β -proteobacteria (denitrification)
*	36.β-proteobacteria
*	38. Nitrospira moscoviensis (95%) /Nitrospirae (nitrite-oxidizing)
*	39. Nitrospira moscoviensis (95%) /Nitrospirae
*	41. Flavisolibacter sp. (93 %) /Bacteroidetes (denitrification)
*	43. <i>lamia</i> majanohamensis (99%)/Actinobacteria (denitrification)
*	44. <i>lamia</i> majanohamensis (99%)/Actinobacteria(denitrification)
*	45. Ferribacterium limneticum (99%)/ p-proteobacteria (Fe(III)-
	reducing
*	48. Nitrospira moscoviensis (95%) /Nitrospirae
*	49. Zoogloea caeni (99%)/β-proteobacteria

DGGE

analysis


Stefano Papirio

Results – batch tests

- Determination of the lowest tolerable pH
- Stoichiometric ethanol/nitrate ratio
- Lenght: 9h
- Shaking velocity: 200 rpm

Stoichiometric ethanol/nitrate ratio + respiking with ethanol after 4.5 hours

pH: 4

Stefano Papirio

Conclusions (1)

Unsuitability of the polypropylene support for the biomass immobilization

- * No dilution of the inhibitors because of the low fluidization degrees
- * The stoichiometric **COD/SO**₄²⁻ **ratio** has been shown to be inadequate to attain a high-efficiency sulfate reduction. However, the feed pH of 5 has always been neutralized.
- * Sulfate reduction efficiencies higher than 95% have been obtained with a COD/SO₄²⁻ ratio of 4.
- * Acetate accumulation in both the reactors
- * In R1 acetate accumulation is inhibitory for the biological process, whereas, in R2, it does not affect the process since the excess of lactate in the feed solution.
- * **Microbial competition for lactate.** Activity tests will be conducted in order to assess the sulfatereducing activity and other fermentation activities.

Stefano Papirio

Conclusions (2)

- * Quick acclimatization of the denitrifying bacteria. Many denitrifying species colonized the support.
- * Ethanol and nitrate effluent concentrations are below the detection limit when the ethanol/nitrate ratio is two times higher than the theoretical one.
- * The **HRT decrease** from 9h to 6h and the **gradual pH decrease** from 7 to 4.5 do not affect the efficiencies of the reactor.
- * The **temperature** has been shown not to affect the process so far.
- * Denitrification occurs even at **pH as low as 3.5.**

Future Research

- * Still **decreasing the pH** in the feed solutions for the reactors;
- * Evaluation of the **metal toxicity** to the denitrifying activity;
- * Add sulfate to the feed solution and study the simultaneous removal of sulfate and nitrate;
- * Assess the **toxicity of sulfide** to the denitrifying bacteria;
- * Set-up of a MBR system for the comparison of the denitrification efficiencies

Thank you for the attention!!!

Email: stefano.papirio@unicas.it stefano.papirio@tut.fi