

Copper slag used for abrasive blasting and heavy metal contamination , case study Van Phong bay, Vietnam

Belgian Promoter:

Prof. Dr. Rudy Swennen Dr. Valérie Cappuyns

Vietnamese Promoter: Assoc. Prof. Dr. Nguyen Ky Phung

Tran . T. T. Dung

Problem statement

The use of copper slag as an abrasive blasting agent from shipping industry raises environmental concern about heavy metal pollution Van Phong bay

• A study of the potential dispersion of heavy metals from copper slag waste and sediment needs to be carried out

Objectives

- Quantify the degree of contamination of sediment and soil
- Assess the risk in relation with heavy metals present in copper slag waste, sediment and soil

Methodology (Sampling)

Marine sediment

•19 surface sediment samples were collected near the shipping factory (500m interval)

•One deep core sediment (0 - 1.5m) was collected at the alluvial spit connected to the sea

Soil

At the dump site

At the shipping factory

- Distance: 10m, 20m, 50m, 70m, 90m and 110m
- 2 deep core sample (0-60cm) and (0-1.6m)
- **Red points** : deep core soil samples **Green points:** surface soil samples

- Distance: 100m and 150m
- I deep core sample (0 2.5m)

Methodology	Samples	
Characterization	Contamination assessment	Leaching test
-Grain size analysis -Total element concentrations	-Based on Sediment Quality Guidelines - Based on Quantitative	 Examine actual and potential mobility: single extraction with CaCl₂(0.01M), NaCl(30g/L), EDTA(0.05M),
-Organic matter	heavy metal pollution indices (Enrichment Factor :EF, Geo	- Influence of pH on long term
-CEC - XRD analysis	accumulation Index : I _{geo,} ,PLI: Pollution Load Index and Risk	release of heavy metals : pH _{stat} leaching test

Results

Characteristics of samples								
Marine sediment	Soil	Copper slag waste						
Sediments : low clay and organic matter content and low CEC, high carbonate content.	<i>Surface soil</i> : low clay and organic matter content and low carbonate content	- XRD analysis: amorphous phases, Fayalite, and Magnetite phases						
- A strong positive correlation between (Al, Fe, K and organic matter) and some heavy metals (As, Pb and Zn)	- High concentration of Fe, Zn, Cu, Mn, Pb, As and Cr in sample near the dump site	 High concentrations of Fe, Zn, Cu, Mn, Pb, As and Cr Low CEC 						
	Soi core: high concentration of Fe, Zn, Cu, Mn, Pb, As and Cr at the							

surface (0-5cm)

Assessment of contamination - sediment

 $EF \le 1$: no enrichment $1 < EF \le 3$: minor enrichment $3 < EF \le 5$: moderately enrichment $5 < EF \le 10$: moderately severe enrichment $10 < EF \le 25$: severe enrichment $25 < EF \le 50$: very severe enrichment

EF > 50: extremely severe enrichment

As shows the greatest concern because of its high EF

Concerning both RAC and total metal concentration: Zn, Cu, Pb and As possess a high risk

Assessment of contamination - soil

•As, Cu, Pb and Zn show the high concern

•EF decrease with distance and depth

Dispersion of fine waste particles by wind

Actual mobility and potential mobility

- Actual mobility (extraction with $CaCl_2 0.01M$) : low
- Potential mobility (extraction with NaCl 0.5M, EDTA 0.05M, CH_3C00H 0.43M) : highest efficiency with CH_3COOH

Sediments

- Most of heavy metals reached the highest extractability at pH < 4
- pH changed during extractions

Copper slag waste

- Most of heavy metals released in similar amounts in the three extraction steps
- No significant variation in pH during extraction

Comparison between acidification and complexation

Ratios of percentage extracted by EDTA and CH_3COOH in sediments

	As	Ca	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Zn
16	0.3	0.2	1.7	0.3	0.1	0.9	0.2	0.3	0.5	2.3	0.6
19	0.4	0.2	1.3	0.3	0.1	0.8	0.2	0.4	0.5	2.1	0.6

Ratios of percentage extracted by EDTA and CH_3COOH in Copper slag wastes

	As	Ca	Cd	Co	Cr	Cu	Fe	Mn	Ni	Pb	Zn
20	0.01	0.4	0.1	0.02	0.03	0.6	0.02	0.1	0.3	0.1	0.2
21	0.01	0.3	0.1	0.02	0.03	0.7	0.01	0.1	0.2	0.1	0.2

Long term release of heavy metals under influence of pH on Soil (pH_{stat} at pH = 4)

Long term release of heavy metals under influence of pH on copper slag waste

Conclusion - Outlook

- Low actual mobility of heavy metals from sediment and copper slag waste

- Heavy metals in the sediments and the copper slag waste samples were not mobilized easily with an organic complexation agent.

- Acidification had a more significant effect on heavy metal release in sediments (except Cd and Pb)

-High release of Cu and Zn in surface soil near the dump site

Conclusion - Outlook

- Establish the *local background* concentrations of heavy metals

- Assess the **potential recycling** of copper slag waste as construction material (brick or aggregate)

- Sea water exposure test to assess the alteration of solid phases through time of copper slag waste

- Mineralogical analysis to study solid phase alteration through time of exposure of copper slag waste under different environmental conditions (sea water, acid)

- **Bioavailability test** to determine the hazards of the heavy metals from copper slag waste to organisms

Thank you for your attention